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Solid earth geophysics and ice sheets
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Geodynamics and ice sheets:
e Slow viscous flow

e Non-Newtonian fluid
e Temperature dependent viscosity
e Phase changes

e Brittle and ductile flow regimes
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Geodynamics and ice sheets:
e Slow viscous flow
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e Temperature dependent viscosity
® Phase changes
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pe = Mass Diffusion
~ Mass Advection

Key differences:
e Ice sheets (nearly) barotropic

e Ice sheets dont conserve mass
(mass added and removed)
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Geodynamics and ice sheets:
catfcosty R e Slow viscous flow

e Non-Newtonian fluid

e Temperature dependent viscosity
® Phase changes

e Brittle and ductile flow regimes

Friction, earthquakes and _ ‘
granular materials, flexure, [ Low Peclef number:

etc. TR pe = Mass Diffusion
il Mass Advection

L
=
o
c
0
2
=
7
R
2
>
o
£
0
o
0
o
¢
£

Key differences:
e Ice sheets (nearly) barotropic

e Ice sheets dont conserve mass
(mass added and removed)




Ice sheet dynamics
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Ice sheet dynamics

— interior: laminar flow

ice-sheet

transition zone: flow is intermediate
between laminary and plug

ice-streams,outlet exterior: “plug’ flow
glaciers, etc

ice-shelf




Ice sheet dynamics

Shallow-ice approximation (SIA):

n+l
uz) ~ 1 - (4;2)

‘Blatter’
u(z) ~ f(z)

Shallow-stream approximation (SSA):

ice-streams,outlef u(z) ~ 1
glaciers, etc

ice-shelf




Ice sheet dynamics
Shallow-ice approximation (SIA): l

n+l
uz) ~ 1 - (4;2)

‘Blatter’
u(z) ~ f(z)

Goal: Describe transition from SIA
to SSA

Shallow-stream approximation (SSA):

ice-streams,outlef u(z) ~ 1
glaciers, etc

ice-shelf




A simple approximation

Multiple (equivalent) approaches to mechanics:
(Newtonian, Lagrangian, Poisson Brackets, . . .)

ice-sheet , : / .
Start with Hamiltons Principle:

ta
L =/ (kinetic energy - potential energy)dt
t

oL =0
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A simple approximation

Multiple (equivalent) approaches to mechanics:
(Newtonian, Lagrangian, Poisson Brackets, . . .)

ice-sheet

Start with Hamiltons Principle:
t2

L = | (kiretic-energy- - potential energy)dt

(dU = TdS-+ dW

constant entropy

dW =PdV + dl'visc + dI'fric

- J

ice-shelf

Dissipation of gravitational potential = viscous + frictional dissipation
energy

L[u] = functional of u to be minimized




A simple approximation: Rayleigh-Ritz Method

Assume velocity of the form:
U(X,Z) = Qo +4:10; + Q> + . ..

ice-sheet

\ Require:
| u(x,z) = SIA

u(x,z) = SSA—
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A simple approximation: Rayleigh-Ritz Method

Assume velocity of the form:
U(X,Z) = Qo +4:10; + Q0> + . ..

\ Require:
| u(x,z) = SIA

u(x,z) = SSA—
— N\

Two ferm expansion:

u(x,z) = ao(x) +ai(x) [1 B (ZSP: Z)MI}

Satisfy Basal BC: el
txz) = U - (B2 ) ]+
n+l h




A simple approximation: Rayleigh-Ritz Method

Assume velocity of the form:

. U(X,Z) = Qo +4:10; + Q> + . ..
ice-sheet

\ Require:
| u(x,z) = SIA e(x) = Rh
u(x,z) = SSA/W M
~

Two term expansio n+1
u(x,z) = ao(x) *“1% [1 _( ) ]




(Non-dimensional) Diagnostic and Prognostic Equations
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Transition from SIA to SSA introduces
‘quasi-boundary layers’
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Time Integration: Mixed Eulerian-Lagrangian Methods




Time Integration: Mixed Eulerian-Lagrangian Methods

Allow integration points to advect as Lagrangian fracers
Create/destroy tracers to preserve accuracy

Can view tracers as discrete mass - mass is conserved exactly
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Time Integration: Mixed Eulerian-Lagrangian Methods

Allow integration points to advect as Lagrangian fracers
Create/destroy tracers to preserve accuracy
Can view tracers as discrete mass - mass is conserved exactly
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nodes migrate

Advantages:

Lagrangian advection of information (no fake
diffusion)

Re-meshing is intepolation free (nodes dont get
moved)

Easy to deal with evolving free surfaces

Disadvantages:

Resolution migrates

Ad-hoc rules to add/subtract nodal points
Boundary conditions can be problematic
Need about 2x as many grid nodes



Grounding line migration: ‘Particle Method’

e Represent grounding line as a quasi-particle - a ‘groundon’

* Grounding line migration - find groundon trajectory

grid nodes
/ \ e v e
® @ ® o ®
Grounded ice Floating ice

e Evolution equation for each groundon:

dg: = fy(t)
dt

*Solve simultaneously with advection-diffusion eqn.




Grounding line migration: ‘Enthalpy Method’

® Analogy with diffusion problems with moving phase boundaries

e Consider floating ice and grounded ice to be different phases

“Phase’ boundary between grid nodes

grid nodes I/_/I_/_\ could be here or here
l If—
/ l l
@ ® | 1® ®
Grounded ice : Floating ice
' '

Boundary has to advance/retreat one discreet grid point at a time

Introduce parameter f (varies from O to 1) = ___Volume of ice in grid
Volume fo ground enftire cell

Track flux of ice into each grid over time - removes some of hysteresis
problems




Which ice dynamics approximation is best?

® Depends on question asked and data available
® A model is an improvement if it explains more data

® Buf . . . also need fo account for increased number of degrees of
freedom
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Which ice dynamics approximation is best?

® Depends on question asked and data available
® A model is an improvement if it explains more data

® Buf . . . also need fo account for increased number of degrees of
freedom
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An Example: Steady-state ice sheet profiles

‘ A = 10" Pa-s'm’ i
Velocity (m/year)

0 20 40 60 80 100
— | | T
S . .
o Analytic (SIA) steady-state profile
@ 2000
C
S
= 1000
S 0

0 20 40 60 80 100

100

. Rayleigh—Ritz ////’_—_\\\\\N'
---SIA .

>
£ Analytic (SIA) steady-state velocity |
2 50} L.
E )
q_) [ )
>

O | | ] &)

0 20 40 60 80 100

Distance from ice divide (km)




An Example: Steady-state ice sheet profiles
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Example: Steady-state ice sheet profiles
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An Example: Steady-state ice sheet profiles

Velocity (m/year)
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An Example: Steady-state ice sheet profiles
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An Example: Steady-state ice sheet profiles
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An Example: Steady-state ice sheet profiles
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Steady-state ice sheet profiles
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Steady-state ice sheet profiles
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Steady-state ice sheet profiles
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Steady-state ice sheet profiles
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Back to explanation space . . .

® Depends on question asked and data available
® A model is an improvement if it explains more data

® Buf . . . also need fo account for increased number of degrees of
freedom
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Back to explanation space . . .

® Depends on question asked and data available
® A model is an improvement if it explains more data

® Buf . . . also need fo account for increased number of degrees of
freedom

Full Stokes
‘Blatter’

Potential
% Explanation

SIA + SSA

Number of Degrees of Freedom

Challenge: Identify and parameterize the “barrier’ processes
that limit our understanding




Deux ex machina?

“SIA/SSA
Coarse grids, integration over hundreds
of thousands of years

Already developed
and in use
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Blatter

Moderate grids, century fto thousand

year time-scale integration

Heavy development
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*Full Stokes’

Highest development | High resolution grids, decade fo cen-
cost tury time-scale integration
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